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measure of the distortion. To do so we use the 
indices D d and De which are the percentage mean 
deviations of octahedron bond lengths and angles 
respectively from their mean values. They are given 
in Table 4 along with values calculated for CaTiO3 (n 
-- oo). The mean distortions are fairly small, never 
greater than 1%. They are significantly greater in the 
CaO-TiO2 compounds than in Sr3Ti207 and there 
are no significant trends in the series n = 2, 3, o0. 
However, the two types of octahedra in n = 3 struc- 
tures appear to have a different degree of distortion 
especially with respect to angles (D~). 

6. Concluding remarks 

A procedure for predicting the space group of mem- 
bers of this series from the structure of the n = 
member is outlined in §3.1. and 3.2. It can be 
extended to indicate that the most likely space group 
for all n-even members is Ccm21 and for n-odd 
members is Pcab. This procedure should find general 
application in the solution of all such layered struc- 
tures from known n = DO end members. Where our 
analysis has overlapped with that, for n = 1, of 
Aleksandrov (1987), the two approaches are in 
agreement. 

The combined use of neutron powder diffraction 
and CBED in the solution of such structures is to be 
recommended. It should however, be noted that a 
space group could not be successfully allocated from 
the available CBED patterns without pattern simu- 
lations which relied on the neutron determined 
atomic positions. 

Support under the National Research Fellowship 
scheme is gratefully acknowledged by EHK. Many 
thanks to Professor P. E. Fielding of the University 
of New England for preparation of the Sr3Ti20 7 
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Abstract 

Single-crystal X-ray diffraction results ( M o K ~  
radiation, A=0.71073A)  are presented for the 
inorganic misfit layer compound titanium sulfide 
(PbS)l.18TiS2 which can be described as a two- 
component structure. The first subsystem (TiS2, 
u = 1) has space-group symmetry C21/m, and a basic 
structure unit cell given by a~l =3.409(1),  al2 = 

0108-7681/91/030314-12503.00 

5.880 (2), a13 = 11.760 (2) A, and eel = 95"29 (2) °. The 
modulation wavevector is q~ = a*l = aa*l, with a = 
0"5878 (3). Its subsystem superspace group is pc],,,~ 
(a, 0, 0). The second subsystem (PbS, v - - 2 )  has 
space group C2/m and a basic structure unit cell 
given by a2~ = 5"800 (2), a22 = 5"881 (2), a23 = 
11.759 (2) A, and a2 = 95.27 (2) °. The modulation 
wavevector is q2= a*t. The subsystem superspace 

• oC2/m (a ,0 ,  0). The relation between the group I S .  s t  

© 1991 International Union of Crystallography 
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two unit cells is defined by the c o m m o n  (a'u2, a*3) 
plane. The symmetry of the complete system is 
described by the single superspace group Gs--iDC2/ms T 
(a, 0, 0). Reciprocal lattice parameters for this super- 
space embedding are a~f = a ' l ,  a* = a*2, a~ = a'~3 and 
a* = a*~. Refinements on 1449 main reflections, with 
I >  2.5o-(/), converged smoothly to RF2 = 0"064 (RF 
= 0"069). The final structure model included dis- 
placive modulation parameters up to second har- 
monics for Pb and first harmonics for the other 
atoms. The largest modulation amplitudes are on 
both atoms of the PbS subsystem. They mainly 
desribe displacements parallel to the layers, along the 
commensurate direction a~2. A detailed analysis is 
given of the coordination of the Pb (u- -2)  and S 
(u = 1) atoms by plotting interatomic distances as 
a function of the fourth superspace coordinate. 

Introduction 

Inorganic misfit layer compounds are one example of 
the so-called intergrowth structures (Makovicky & 
Hyde, 1981; Wiegers, Meetsma, van Smaalen, 
Haange, Wulff, Zeinstra, de Boer, Kuypers, van 
Tendeloo, van Landuyt, Amelinckx, Meerschaut, 
Rabu & Rouxel, 1989). This type of crystal is charac- 
terized by the presence of two or more mutually 
incommensurate three-dimensional lattices. The 
structure is described by a finite fraction of the atoms 
being arranged periodically according to one lattice, 
while the remaining fraction has the periodicity of 
the second lattice. Intergrowth structures form a 
class of incommensurate phases which is essentially 
different from either modulated structures or quasi- 
crystals. 

The structures of the misfit layer compounds are 
characterized by an alternate stacking of TS2 and 
MS layers (both M and T represent a .metal atom) 
(Makovicky & Hyde, 1981; Wiegers et al., 1989). The 
TS2 layers form the first subsystem (u = 1) with 
periodicity according to the lattice Al = {a~l, a~2, 
al3}. The second subsystem (u = 2) is formed by the 
MS layers with periodicity according to A2 = {az~, 
a22, a23}. For T = Nb or Ta [e.g. (SnS)l.lvNbS2] both 
subsystems have an orthorhombic lattice, with the c 
axis perpendicular to the layers (Meetsma, Wiegers, 
Haange & de Boer, 1989; van Smaalen, 1989). 
Depending on the combination CC, FF or CF for the 
C- or F-centring of either cell, we have a23 ~--a13 or 
a23 = ½a~3. The unit-cell setting used previously for 
many examples had al2=a22 but all was only 
parallel to a21. Their incommensurate length ratio 
defines the incommensurability in these ortho- 
rhombic inorganic misfit layer compounds. 

In a recent paper it was argued that when the 
NbS2 or TaS2 slab is replaced by a TS2 slab with T 
octahedrally coordinated, a monoclinic symmetry 

results (Wiegers, Meetsma, van Smaalen, Haange & 
de Boer, 1990). The angle between a~2 and a~3 is then 
greater than 90 °, with cos(a~)= -a,2/(6G,3). Misfit 
layer compounds with monoclinic sublattices are 
observed for (PbS)~.~3VS2 and (PbS)~.IsTiS2 (Gotoh, 
Goto, Kawaguchi, Oosawa & Onoda, 1990; Onoda, 
Kato, Gotoh & Oosawa, 1990; Wiegers, Meetsma, 
van Smaalen et al., 1990). 

The structure of intergrowth compounds can be 
described by the so-called superspace groups (Janner 
& Janssen, 1980). For the orthorhombic misfit layer 
compound (SnS)117NbS2 this has been done pre- 
viously (van Smaalen, 1989). The first result, which is 
more of philosophical importance, is that the 
superspace-group approach shows that intergrowth 
compounds indeed have space-group symmetry. For 
the basic str0cture, its principal result was to define a 
relation between the space groups of the individual 
subsystems. This allowed the determination of the 
proper non-centrosymmetric space group for the SnS 
subsystem (van Smaalen, 1989). Subsequently, this 
principle was applied to other misfit compounds 
(Wiegers et al., 1989). The symmetry restrictions for 
the modulation functions were also given, but values 
for the remaining independent parameters were not 
determined. Recently, refinements of the modulated 
structures of (LaS)~.20CrS2 and (PbS)I.~2VS2 were 
published (Kato, 1990; Onoda et al., 1990). 

In this paper the complete superspace-group 
description for (PbS)~.IsTiS2 will be given, including 
a determination of the modulation parameters. 
Refinements were performed with the computer 
program C O M P R E F  (Peffi6ek, Maly, Coppens, Bu, 
Cisarova & Frost-Jensen, 1991), which is the exten- 
sion for intergrowth structures of the refinement 
program J A N A  for modulated structures (Petfi6ek & 
Coppens, 1988). The coordination of the various 
atoms is analyzed by plotting interatomic distances 
as a function of the fourth superspace coordinate, 
both with respect to atoms in the same subsystem 
and with respect to the atoms of the other subsystem. 

Experimental 

A powder sample was prepared from the elements; 
the ratio of the elements was chosen such as to 
correspond with the expected ratio in view of a~l and 
a21 from the PbS double layer in (PbS)l.~4NbS2 
(Wiegers, Meetsma, Haange, van Smaalen, de Boer, 
Meerschaut, Rabu & Rouxel, 1990) and 1T-TiS2 
(Chianelli, Scanlon & Thompson, 1975) respectively. 
The mixture of elements was heated at 1073 K in an 
evacuated quartz tube for seven days. Crystals suita- 
ble for electrical transport measurements and single- 
crystal X-ray diffraction were obtained by vapour 
transport using chlorine, for which about 1% by 
weight of (NH4)zPbCI6 was used. Crystals grew as 
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thin platelets at the cold part of the gradient between 
993-923 K. 

Single-crystal X-ray diffraction was performed on 
an Enraf-Nonius CAD-4F diffractometer using 
monochromatized Mo K~ radiation (,~ = 0.71073 ,~) 
with a crystal of approximate dimensions 0-18 × 0.22 
x 0.008 mm 3. All reflections could be indexed on 

two mutually incommensurate monoclinic unit cells. 
For comparison with the orthorhombic misfit layer 
compounds C-centred cells were used. Unit-cell 
dimensions and their standard deviations were deter- 
mined independently for each subsystem from the 
setting angles of 22 reflections in the range 22.26 < 0 
< 27.50 ° in four alternative settings (de Boer & 
Duisenberg, 1984). 

For TiS2 (first subsystem, u =  1), the lattice 
parameters were a~, = 3.409 (1), a12 = 5.880 (2), a13 

A 3 ' = 11.760 (2) A, al  = 95.29 (2) ° and V 234-7 (1) 
For the PbS subsystem (l, = 2), the lattice param- 
eters were a21 = 5.800(2), a22= 5.881 (1), a~3= 
11.759 (2) ,~, a ,  = 95-27 (2) ° and V = 399.4 (2) A, 3. 
The results showed that both a,2, both a~3 and both 
a ,  differed by less than their standard deviations. 
Analysis of the diffraction pattern did not show any 
splitting of the common (0, k, /) reflections. As is 
theoretically expected, and is also found for the 
orthorhombic misfit compounds, this implied a12 = 

a22 and a13 = a23 , while the a,l axes, being parallel, 
had an incommensurate length ratio al~/a2~ = a.  
Therefore, the average values of the lattice 
parameters were used to describe the structure. They 

= l are az=~(a12+a22)=5"881(1),  a3 ~(a13+a23)= 
11.760(2) and a = { - ( a ~ + a 2 ) = 9 5 . 2 8 ( 2 )  ° . The a 
axes for the two subsystems were found to be all = 
3"409 (1) and a21 = 5-800 (2) A,, respectively. From 
these the incommensurate ratio was determined as a 
=0"5878(3). 

The data collection was performed separately for 
the subsystems. Reflection intensities were measured 
at the nodes of the reciprocal lattices of the 
respective subsystems. All main reflections were 
measured in one hemisphere up to 0 = 35 ° for TiS2. 
Intensities for PbS were measured up to 0 = 45 ° 
because of the presence of a stronger scatterer. The 
experimental stability was checked by three standard 
reflections measured every 2 h of X-ray exposure 
time; they showed a long-term variation of less than 
1%. The intensities were corrected for the scale 
variation, Lorentz and polarization effects, and for 
absorption using a Gaussian integration method 
(grid: 10 x 10 x 6; Spek, 1982). Further details of the 
data collection are given in Table 1. 

For TiS2, 1122 measured reflections were com- 
bined into 593 unique reflections, using Laue symme- 
try 2/m. The internal consistency w a s  RI = (~.[I i -  
IAvl)/(YIi) = 0"064. For PbS, the same Laue symme- 
try reduced 3494 measured intensities to 1755 unique 

Table 1. Data-collection parameters  

Diffractometer 
Radiation 
Monochromator 
Temperature (K) 
0 range, min., max. (°) 
oJ/20 scan (°) 
Range of  (h,k,I) 

Crystal to receiving 
aperture distance (ram) 

Horizontal, vertical 
aperture (mm) 

Reference reflections; r.m.s. 
deviation (%) 

Drift correction 
Min. and max. absorption 

correction factor 
X-ray exposure time (h) 
Total data 
Unique data 

P b S  p a r t  TiS2 p a r t  
Enraf-Nonius CAD-4F 
Mo K&, A = 0.71073 A 
Graphite 
295 

1.74, 45.0 1.74, 35-0 
ato = 0"90 + 0"35tan0 4to = 0-90 + 0-35tan0 
h - 11~11, k 0---~11, h -5---)5, k 0--*9, 

I -23--*23 l - 18---)18 
173 

4"0, 4"5 

220; 0.40 005; 1-40 
522; 0"36 00~; 0"60 
203; 0.37 

0"948-1.000 0"996- 1.000 
1'89--29.49 I "89- -42.72 

61"4 18'0 
3494 1122 
1755 593 

reflections, with R~ = 0.042. The method of measure- 
ment means that the (0, k, /) reflections were meas- 
ured twice. Each data set contains intensities for the 
same (0, k, /) reflections, measured on the same 
crystal. These reflections were used to bring the two 
data sets onto a common scale. For 121 reflections 
present in both data sets, this resulted in a scale 
factor of 1.233 (3) which was used to multiply the 
PbS intensities. The internal consistency was found 
to be Rz = 0.011. The result was a single data set for 
the misfit compound with 2227 unique reflections. 
Refinements were performed on reflections with I > 
2"5tr(/). With this criterion for observability, the 
number of unique reflections reduced to 1449 [165 
(0, k, /) reflections, 331 for the TiS2 subsystem and 
953 for PbS]. 

Satellite reflections were not observed on Weissen- 
berg photographs made with Cu K a  radiation. In 
addition, a random scan for reflections on the dif- 
fractometer did not reveal any satellites. Therefore, 
only main reflections were included in the present 
analysis. 

Superspace-group symmetry 
Superspace-group analysis of intergrowth crystals 
was introduced by Janner & Janssen (1980), and was 
further developed by van Smaalen (1991a). Its appli- 
cation to the orthorhombic inorganic misfit layer 
compounds (SnS)l.lvNbS2 and (LaS)~I4NbS2 has 
been reported previously (van Smaalen, 1989, 199 lb; 
Wiegers, Meetsma, Haange et al., 1990). The descrip- 
tion for the monoclinic compound studied here is 
only slightly different and will therefore be given 
without much detail. 

The starting point of the superspace-group 
approach is the description of the diffraction pattern 
by a finite set of integer indices. The common 
(b'e*) plane implies that four reciprocal vectors are 
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sufficient to obtain an integer indexing of the com- 
plete diffraction pattern. This set, M =  {a l,...,a 4}, 
can be defined as a* = a ' l ,  a* = a*2, a* = a*3 and a* 
= a*~. The a*i (u = 1, 2; i = 1, 2, 3) are the reciprocal 
lattice vectors of the subsystem unit cells as defined 
in the Experimental section. Superspace was obtained 
in the usual way, by identification of the four basis 
vectors of M with the perpendicular projection of 
four independent translation vectors in a (3+ 1)- 
dimensional space (Janner & Janssen, 1980; de 
Wolff, Janssen & Janner, 1981). 

The basis vectors of the subsystem reciprocal lat- 
tices, A*, can now be written as an integral linear 
combination of the basis vectors in M (Janner & 
Janssen, 1980): 

4 

E u a ~,i = Z i k a  k, i =  1,2,3. (1) 
k = l  

The corresponding a x e s  a*~i are parallel, so the 
matrix defining the components of the fourth 
reciprocal vector in M with respect to the first three, 
is given by, 

,~  = (a ,  0, o). (2) 

The interaction between the subsystems implies 
that each one will be modulated, with a modulation 
wavevector given by the periodicities of the recipro- 
cal lattice of the other subsystem. The modulation 
wavevectors, q", can be obtained from the vectors in 
M, by application of an integer matrix V", defined 
such that: 

4 
q"= Y. V[ka'L (3) 

k=l 

Juxtaposition of the 3 × (3 + 1) matrix Z" and the 1 
× (3 + 1) matrix V ~ defines a (3 + 1) × (3 + 1) matrix 
W ~ as (van Smaalen, 1991a): 

W~ = (~,~).  (4) 

The requirements for V ~ are that: (i) W" is non- 
singular and (ii) the entire diffraction pattern can be 
described. For the present analysis the following 
matrices were used: 

Ii°°il Ii°°il W1 = 1 0 W2 = 1 0 . (5) 
0 1 0 1 

0 0  0 0  

It is not difficult to show that any main reflection 
or satellite of subsystem v, with indices (h,, k,, l,, 
m~) with respect to A* and the vector q", has integer 
indices with respect to M, given by: 

(H, K, L, M) = (h,, k, ,  l,, m , )WL (6) 

Table 2. Elements of  the superspace group G~, 
together with the corresponding elements of  both 

subsystem superspace groups G s, u = 1, 2 

n~, i = 1,...,4 assumes all integer values. All  elements  m a y  be combined  with 
the centr ing t rans la t ion a n d / o r  any lattice t ransla t ion.  The posi t ion of  the 
origin relative to the symmet ry  elements is given by the values of  r,, i = 
i ..... 4. In this paper ,  r, = 0 is used. 

(E lint, n2, n3, n,) (E lira, n2, n3, m) 

(e ~1~, ~, o, ;) (E ~1;, ;, o, ;) 
(i Tit,, r~, r3, ~,) (i TI~,, r,, r,, r,) 

(m, TI~,, 0, 0, ~ + ~,) (m, TI', + ~,, 0, 0, ~,) 

(2, 110 ....... ~) (2~ 11~, r2 .... O) 

With (6) and the W ~ matrices from (5), the four- 
integer indexing of the reflections for both subsys- 
tems can be calculated. The first subsystem gives rise 
to (H, K, L, 0) reflections and the second subsystem 
gives (0, K, L, M) reflections. As no intensity could 
be found at the satellite positions, all (H, K, L, M) 
reflections with both H and M not equal to zero are 
absent. 

Considering the superspace indexing, the diffrac- 
tion pattern again has monoclinic symmetry, now 
generated by (2x 1) and (rex 1). Systematic extinc- 
tions were found to be H + K + M = odd is absent 
for the (H, K, L, M) reflections. This implies a 
C-centring given by the centring translation, 

(~, ½, O, ~). (7) 

Thus, the (3 + 1)-dimensional Bravais class is pC~/~, 
(a, 0, 0), with C a tentative symbol representing the 
centring translation (7). In the standard setting this 
corresponds to the Bravais class given by the same 

• Y 1 symbol, but with C representing (~, ~, 0, 0) (de Wolff 
et al., 1981). 

No further extinction conditions were observed. 
However, it was noted that the condition given 
above reduces to H + M = odd is absent for the (H, 
0, 0, M) reflections. As no satellites were measured, 
this implies the condition H = odd is absent and M 
= odd is absent for these reflections. This latter 
condition indicates the presence of the symmetry 
elements (2x 1]½, 0, 0, 0) and (2:, 1[0, 0, 0, 5) in the 
superspace group describing the structure. The 
former condition suggested the symmetry elements 
(2x 1[0, 0, 0, 0) and (2:, 1]~, 0, 0, I). Therefore, for a 
centrosymmetric structure, there are two possible 
superspace groups compatible with the Laue symme- 
try and extinction conditions: Gs(I) = --sloC2/-m (a, O, O) 
and Gs(II)= pC~/~, (a,  0, 0). Note that Gs(I) is 
equivalent to pc~,/~, (a, 0, 0), while G~(II) is equiva- 
lent to P~'/-7' (a,  0, 0). For a non-centrosymmetric 
structure, the corresponding non-centrosymmetric 
superspace groups should be used, e.g. G'~(I)= pc2 
(a, O, 0), etc. 
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Table 3. Structure coordinates and temperature parameters (A 2) as obtained f rom refinement o f  the basic 
s t r u c t u r e  

Coordinates refer to the subsystem lattice basis. Standard deviations in the last digits are given in parentheses. When these are not given, the corresponding 
parameters are fixed by symmetry. The temperature factor which appears in the expression for the structure factor is defined by T =  e x p [ - ( f l j ,  h~,h~, + 

,It * flz2h~zh.z + ~33h~3h~3 + 2/3z3h~zh~3)] and fl,, = 2zr2U, ja .,a .r For  all atoms, U~2 and U~3 are zero as a consequence of  the symmetry. 

v x °, x°2 x°3 U,, U22 U~3 U:~ 
Ti I 0.0 0.0 0"0 0-0133 (8) 0"0107 (6) 0"0142 (7) 0.0015 (5) 
Si 1 0"5 0-1888 (3) 0.1221 (2) 0.0096 (7) 0-0094 (5) 0"0110 (6) 0-0028 (5) 
Pb 2 0'25 0-0256 (1) 0.63638 (5) 0.0459 (3) 0'0338 (3) 0"0223 (2) 0.0033 (2) 
$2 2 0-75 0.0184 (6) 0.5989 (2) 0.0499 (23) 0"0239 (13) 0-0209 (12) 0.0019 (10) 

Analysis of the satellite intensities would make it 
possible to distinguish between the two extinction 
conditions, and thus directly determine whether the 
superspace group is Gs(I) or Gs(II). Obviously, the 
complete structure determination is needed to decide 
on the presence of the inversion centre. In the 
present study, refinements have shown the correct 
superspace group to be Gs(I) = G.~ = P~/~' (a, 0, 0). 

The matrices W ~ [equation (5)] define the coordi- 
nate transformation between superspace and the sub- 
system superspace embedding. The elements (R~'[~-~') 
of the subsystem superspace group are obtained as 
(van Smaalen, 1991a,b): 

Rs = W~'Rs(W~) -1 (8a) 

• s = w % .  ( 8 b )  

Thus for the subsystem superspace groups G l = Gs 
and G 2 = P~'/~' (a-1,  0, 0) were obtained, with C 
again defined by (7). The elements of both groups G~ 
and G~ are given in Table 2. Similarly, the space 
groups describing the symmetry of the basic struc- 
ture of each subsystem can be obtained as the restric- 
tion of G~" to three-dimensional space. Thus, we have 
G~ = C2/m and G2 = C21/m. Note that, unlike the 
subsystem superspace groups, GI and G2 are equiva- 
lent. The different notation reflects that one particu- 
lar possibility was chosen for combining the 
inversion centres of the subsystems. 

Determination of the basic structure 

A trial model for the structure of the PbS subsystem 
was deduced from the geometry of the PbS double 
layer in (PbS)~ 14NbS2 (Wiegers, Meetsma, Haange et 
al., 1990). The starting coordinates of S1 were from a 
model with Ti in trigonal antiprismatic coordination. 
The PbS subsystem was centred at x23 -- 0.5 and the 
TiS2 layer was centred at x~3 = 0. As mentioned in 
the previous section, there are two possible super- 
space groups for describing the symmetry. They 
correspond to the two possible ways in which the 
inversion centres of the two subsystems can be 
aligned. The two trial structures thus obtained give 
rise to different intensities for the (0, K, L, 0) reflec- 
tions. Therefore, they can be discriminated on the 
basis of a structure-factor calculation. 

Refinement on F 2 for the model according to 
Gs(II) resulted in a fit with RF~ = 0-39. Refinement of 
the structural parameters in the model according to 
G,(I) gave RF~ = 0-072. This shows the latter symme- 
try to be the correct choice. All calculations were 
performed with the computer program C O M P R E F  
(Petfirek et al., 1991). 

The partial R factors for the final fit in G~ show a 
rather high value for the reflection set of the TiS2 
subsystem. This is also found in, for example, 
(LaS)l.2oCrS2 (Kato, 1990). The explanation is based 
on the influence of the modulation on the reflection 
intensities (see next section). The atomic coordinates 
and temperature factors for the basic structure are 
given in Table 3. They show that both atoms, Pb and 
$2, of the PbS subsystem as well as S1 of the TiS2 
subsystem are on the mirror plane, whereas Ti is on 
the inversion centre. 

From the size of the subsystem unit cells and the 
number of formula units per cell (Z = 4 for PbS and 
Z = 2 for TiS2), the composition of the compound is 
calculated as (PbS)I.~8TiS2 [viz. 1.18 = 2 x (3-409/ 
5.800)]. 

Refinement of the modulated structure 

As explained elsewhere (van Smaalen, 1991b), the 
basic structure coordinates for each subsystem with 
respect to its own subsystem basis, are given by: 

0 X, i ( j )  = n~i + x~i(j)  - (Zdt)~ (9) 

where n~; are integers describing the unit cell and 
X 0 • ,,;(j) are the coordinates of atom j within one unit 
cell, which correspond to those given in Table 3. The 
matrix Z~ is defined by writing Z ~ as the juxtapo- 
sition of a 3 × 3 matrix Z~ and a 3 x d matrix Z~, (d 
= 1): Z " =  (Z~Z~). The t-dependent part reflects a 
shift of the origin with respect to that obtained with 
the standard superspace description for subsystem u. 
This term is necessary to retain the relative phase 
between the subsystems, when varying the physical 
space section ~ 3 ( t ) .  

The atomic positions in the modulated structure 
are the sum of x,; and the modulation function: 

X v i ( j )  = X,i(j)  + uJ i (X .vs4 )  ( 1 0 )  
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where x,~(j) is defined in (9); U+t('Xvs4) is the modula- 
tion function of atom j, which is periodic with perio- 
dicity 1 in its argument. Xvs4 is the fourth superspace 
coordinate for the basic structure, in the subsystem 
superspace embedding. It is given by (van Smaalen, 
1991b), 

-Xvs4 ~" O'v'Xv -~- ~ t  (11) 

where V ~ = (VY3Wa), similar to the decomposition of 
Z ~. For each subsystem, the subsystem o- matrix 
represented the coordinates of the modulation wave- 
vector q". For (PbS)l.lsTiS2, the following rela- 
tionships were obtained, 

Or I = (l~, 0, 0)  

o'2 = (a  -1, O, 0). (12) 

The t-dependent part in (11) and the t-dependence in 
Y~i(j), together define the relation between the 
phases of the modulation functions in the two sub- 
systems, and the relative position of the subsystem 
lattices along the incommensurate direction. 

The subsystem superspace embedding is obtained 
from (9)-(12) in the usual way (de Wolff et al., 1981; 
van Smaalen, 1991b). The one-dimensional point set 
comprising the atom in the common superspace is 
obtained as, 

Xs2/__ + 
Xs31 
xs4 ] \'Xs4 ] \ Uu3 ('X'vs4) ' 

with the corresponding basic structure position: 

(13) 

/ Sll 
X s 2 / :  Y"~x~2] + • (14) 
xs3 / 
Xs4] \X,,3] 

The fourth coordinate of the subsystem superspace 
description, 2~s4, follows from (11). It can be written 
as a function of the four ~sk. Y" is the pseudo-inverse 
of Z ~, suitable for the embedding defined by (1)-(6) 
(van Smaalen, 1989, 1991a): 

yl = 1 y2 = 1 . (15) 
0 0 

0 0 

The coordinates given in (9) and (10) are with 
respect to the subsystem lattice basis. The effect of 
the symmetry operators of G~ is then obtained by 
application of the subsystem superspace group 
matrix representations (RslrD to these coordinates 
(van Smaalen, 1991b): 

x'.3/ \x.31 \r~/ 

+ R~ / Mv2[(R~) - ' (X'.s4 -- "rz~)] / • 

\uv3[(R~t ) -  I (X: ,  4 -- TZ)]] 

(16) 

The term (RSZ~-  Z~)t explicity accounts for the 
effect of the origin shift Z~t on the translational part 
of the symmetry operator. 

Symmetry restrictions on the basic structure coor- 
dinates and the modulation functions can be 
obtained when the symmetry operator maps the 
point set representing one atom onto itself: 

x;3(t)l \x.3(t')/ 
Note that t and t' need not be the same. Substitution 
of (9) and (10) into (17), and use of (16) gives for the 
basic structure coordinates, 

+ xOq = + + (18) 

n~3 + x°3] ,n,3 + x°3] r'~] 

Restrictions on the modulation functions can be 
obtained from 

' Uvl(-Xvs4)' [ uvl[(R~t)- l(Xvs4 -- "/'~)]/ 

Uv2('-Xvs4) = R~[u, ,2[(R~t)-  ;(-X,,s4 - "r~)]]. (19) 
Uv3('Xvs4), \Uv3[(R~l)- '(-Xvs4 - 'Tz~)]/ 

Restrictions for the basis structure coordinates are 
the same as determined in the previous section 
(Table 3). To derive the corresponding restrictions 
on the modulation functions, they are written as a 
Fourier series: 

u J i ( ~ v s 4 )  "-- Z AJisin(2"n'n~,.s4) 
n = l  

+ B~icos(27rn~,.~4) (20) 

for j = Ti, S1, Pb and $2, respectively. Xvs4 is given in 
(11). Substitution of (12) gives a different expression 
for the two subsystems: 

Xls4-- a[n,l + x°l(j)] + t (21a) 

x~s4- a-~[n2~ + x°~( j ) -  t]. (21b) 

Non-zero x°~ can be obtained for atoms shifted by 
the centring translation. The restrictions on the 
Fourier components are obtained from (19) and are 
given in Table 4. They apply to the atoms on special 
positions as defined in Table 3. 
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Table 4. Symmetry restrictions on the modulation 
functions 

The restrictions applying to harmonic amplitudes are similar to those 
defined in (20), but with the argument ~ 4  replaced by (~,4 - ~r4) for u = 1 
and by (~z,4-  ~r4) for u = 2. The coordinates are relative to A~ for each 
subsystem, v = 1, 2. The parameters ~ 4  (v = 1, 2) are defined in (11) and 
(21). 

- -  Coordinate Odd harmonics Even harmonics 
Ti (u = 1) u.  Zero Odd 

u j2 Odd Zero 
u~3 Odd Zero 

$1 (u = 1) u .  Even Odd 
u~2 Odd Even 
u,3 odd Even 

Pb (v = 2) u2~ Odd Odd 
/~22 Even Even 
u23 Even Even 

$2 (u = 2) u2~ Odd odd 
u22 Even Even 
u23 Even Even 

To determine the modulation, the first harmonics 
for Pb (three parameters) were added to the list of 
independent parameters. Refinement against the 
complete data set (which includes only main reflec- 
tions) resulted in an improvement of the RF2 value 
from 0"072 to 0"065. Inspection of the reflection list 
shows the largest effect to be an improvement of the 
fit of the (1, K, L, 0) reflections. The reason is that 
these reflections are main reflections of the TiS2 sub- 
system, but at the same time they are also first-order 
satellites of the second subsystem. As the latter is 
modulated now, the contribution of PbS to these 
reflections is obtained far more accurately. On the 
other hand, the  effect of the modulation on the PbS 
main re~iections is compensated by a change of the 
temperature factors. This is also seen in the partial R 
factor, which for the main reflections of the TiS2 
subsystem is lowered from 0.137 to 0.099. Subse- 
quent introduction of the first harmonics for all four 
atoms, and of the second-harmonic modulation for 
Pb gave a further lowering of the R factor. More 
additional harmonics led to a singular matrix, and 
thus could not be refined. 

The parameters for the final structure model are 
given in Table 6 (basic structure parameters) and 
Table 7 (modulation function amplitudes). The R 
factors for the final structure model are given in 
Table 5.* 

The R-factor values for the best structure model 
(Table 5), show that a reasonably good fit was 
obtained. Analysis of the reflection list shows that 
the largest AF values occur for the hi = 3 reflections 
of the TiS2 subsystem and the h2 = 5 reflections of 
the PbS subsystem. This can be explained as a result 
of the nearly commensurate value of a,l-axes ratio: a 

* L i s t s  o f  s t r u c t u r e  f ac to r s  have  been  d e p o s i t e d  wi th  the  Br i t i sh  
L i b r a r y  D o c u m e n t  S u p p l y  C e n t r e  a s  S u p p l e m e n t a r y  P u b l i c a t i o n  
N o .  S U P  53772 (24 pp . ) .  C o p i e s  m a y  be  o b t a i n e d  t h r o u g h  T h e  
T e c h n i c a l  E d i t o r ,  I n t e r n a t i o n a l  U n i o n  o f  C r y s t a l l o g r a p h y ,  5 
A b b e y  S q u a r e ,  C h e s t e r  C H 1  2 H U ,  E n g l a n d .  

Table 5. Crystallographic R factors for the final fi ts 

Partial R factors are defined using a subset of  the reflections. The TiS2 and 
PbS parts comprise the main reflections of  the corresponding subsystem, 
excluding the common reflections (0, K, L, 0). The R factors are defined as 
Re--(ZllFob~l- IF~,dl)/(ZIFo~l) and R~:, = [E(lFob.,I- IF,,cl): ElFo~,l:)'-'. 
Reflection Number of  Basic structure Modulated structure 
subset reflections Re Re'. Re Re'. 

All 1449 0.076 0.072 0.069 0.064 
TiS2 part 331 0.130 0.137 0.088 0-097 
PbS part 953 0-069 0-065 0.069 0.065 
Common 165 0.048 0.046 0.048 0-046 

= 0.587 = 0.6 = ~. It seems that the (3, K, L, 0) and 
(0, K, L, 5) reflections are close enough in reciprocal 
space that the measurement of one intensity is 
increased by the tail of the corresponding reflection 
of the other subsystem. This effect is of course 
largest when the neighbouring reflection is a strong 
one, as was observed. The partial R factors for both 
subsystem reflection sets were thus increased with 
respect to their ideal value. As Pb is the strongest 
scatterer in this system, the largest effect was seen in 
the TiS2 subsystem, thus explaining why the latter 
has the largest partial R factor. The common reflec- 
tions do not include H =  3 or M =  5 reflections. 
They had the lowest partial R factor of 4.6%, indica- 
tive of a good fit. 

Discussion 

The projection of the structure along a~2 and a~l is 
shown in Figs. 1 and 2, respectively. Comparing Fig. 
2 with the corresponding projection for an ortho- 
rhombic misfit compound (Fig. 3), shows the differ- 
ent packing of the TS2 ( T =  Ti, Nb) subsystem. As  
explained earlier, this different packing causes the 
deviation of a from 90 ° (Wiegers, Meetsma, van 
Smaalen et al., 1990). The absence of the horizontal 
mirror plane is obvious from the S positions of TiS2. 
It is noteworthy that the PbS atoms assume x22 
values which compensate for a ~ 90 °. A pseudo a 
glide perpendicular to * a v3 was present for the basic 
structure of the PbS subsystem. 

Interatomic distances within each subsystem are 
given in Table 8, for the case without modulation. 
The shortest Pb to $2 distance is between atoms at 
opposite sides of the PbS double layer. The average 
Pb to $2 distance (2.913 A) is close to that observed 
in (PbS)z.~3TaS2 (2.91 A; Wulff, Meetsma, van 
Smaalen, Haange, de Boer & Wiegers, 1990) and to 
that in (PbS)~.~4NbS2 (2-925 A; Wiegers, Meetsma, 
Haange et al., 1990). The two Ti to S1 distances are 
only slightly different, and are close to the 
corresponding distances in (SnS)~.2oTiS2 (average 
distance is 2.425 A,) and 1T-TiS2 (only a single 
distance of 2.428 A; Chianelli et al., 1975). 

The incommensurability along the a,~ axes is 
shown in Fig. 1. It appears that the shortest distances 
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Table 6. Basic structure coordinates and temperature parameters (t~ z) as obtained by refinement o f  the 
modulated structure 

Coord ina tes  refer to the subsystem lattice basis. S tandard  devia t ions  in the last  digits are given in parentheses.  When  these are not  given, the cor responding  
pa ramete r s  are fixed by symmetry .  The tempera ture  factor  is defined in Table  3. F o r  all a toms,  U~2 and Uj3 are zero as a consequence of  the symmetry .  

v x °, x°~ x°~ U~, U~ U33 U~ 
Ti I 0-0 0-0 0.0 0.0135 (7) 0.0107 (6) 0-0133 (6) 0.0020 (5) 
SI I 0.5 0-1889 (3) 0.1222 (1) 0.0097 (6) 0.0083 (5) 0-0112 (5) 0.0026 (4) 
Pb 2 0.25 0.0256 (I) 0-63638 (4) 0.0459 (3) 0.0318 (3) 0.0224 (2) 0.0032 (2) 
$2 2 0.75 0.0184 (5) 0.5989 (3) 0.0500 (21) 0.0214 (15) 0.0210 (11) 0.0023 (11) 

Fig. 1. Projection of the structure of PbS~.~sTiS2 along the a,,2 axes 
(b axes). Large circles denote S atoms, small circles denote Pb 
atoms and hatched circles denote Ti atoms. Thick lines rep- 
resent atoms with xv2 >-0.5 and thin lines are used for atoms 
with x,2 --- 0-5. 

C 

Fig. 2. Projection of the structure along the avl axes. Large circles 
denote S atoms, small circles denote Pb atoms and hatched 
circles denote Ti atoms. 

between the subsystems are between Pb (v = 2) and 
S1 (u = 1). Owing to the incommensurability, this 
distance varies with the position in the crystal. A 
comprehensive representation of this variation can 
be obtained by plotting the interatomic distance as a 
function of the fourth coordinate, t, in superspace 
(van Smaalen, 199 lb; Onoda et al., 1990). 

The basic structure coordinates may already 
depend on t [equation (9)]. With the W ~ matrices 
given in (6), they are: 

Xli = nl~ + x°~( j )  i = 1, 2, 3 (22a) 

X21 = n21 "4- X ° l  ( j )  - t (22b) 

xzi = n2i + x ° i ( j )  i =  2, 3. (22c) 
o The values for x ~i are given in Table 6. The argu- 

ments of the modulation functions are defined in 
(21). Their harmonic decomposition is given in (20), 
with parameters from Table 7. In each case these 
coordinates refer to the subsystem lattice basis A~. 
To be able to calculate atomic distances between 
atoms belonging to different subsystems, their 
coordinates have to be transformed to a single basis. 
Suitable transformation matrices are 

(Z~ + Z~tr)  -1 (23) 

for u = 1, 2, respectively. Then, the transformed 
coordinates are with respect to the direct lattice basis 
belonging to the first three vectors of the set M 

Fig. 3. Projection of  the structure of  the orthorhombic misfit 
compound (SnS)I ,TNbS2 along the a~, axes. Hatched circles are 
Nb atoms, small circles represent Sn atoms and large circles 
denote S atoms. 
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Table 7. Modulation parameters for the best f i t  

The ampli tudes o f  the modula t ion  funct ion are defined in (20). For  each 
a tom,  they refer to the subsystem basic vectors. F o r j  = Ti, SI (u = I), the 
values correspond to B~,, A,2 and A,3. For  j =  Pb. $2 (u = 2). the values 
correspond to A,t, B,a and B,3 (see Table  3, with r, = 0). S tandard  
deviat ions in the last digits are given in parentheses. 

A J,,/ BAt A~2/ B~2 A J,/ B',3 
First ha rmonic  (n = 1) 
Ti 0-0 0.0004 (9) 0.0011 (5) 
SI - 0.0003 (53) - 0.0011 (8) - 0.0005 (4) 
Pb - 0.0008 (I 1 ) - 0.0108 (5) - 0-0004 (3) 
$2 0-0013 (63) 0.0115 (26) -0.0010 (19) 

Second harmonic (n = 2) 
Pb 0'0005 (6) 0.0002 (7) 0.0007 (3) 

Table 8. Intrasubsystem distances (A) for the average 
structure 

The superscript numbers  refer to the curves in Figs. 8 and 9. With x, = x °, 
corresponding to the coordinates  in Table  6, the basic structure posit ions o f  
the a toms are: Pb = (x, + ~, - x 2 ,  l - x 3 ) ,  S 2 ' =  (x,, x2, x3), $2- '=  ( x , - ) .  
- x 2 ,  l - x 3 ) ,  S2 3 = ( x t + ) ,  - x 2 ,  l - x 3 ) ,  $2 4 = ( x ' ,  - x 2 - ~ ,  l - x 3 ) ,  S2 5=  
(x,, - x 2  + ~, l - x3 ) ,  S1 = (x,, x2, x3), Ti t = (x,, x2, x3), Ti 2 = (x, + 1, x2, x3) 
and T? = (xt + ), x2 + ~, x3). 

Pb---S2 ~ 2.755 (3) Pb---S25 2.975 (4) 
Pb--S2 z3 2-933 (1) SI--Ti L" 2"431 (2) 
Pb---S24 2.971 (4) S1--Ti 3 2-428 (2) 

[equation (1)]. The effect of the symmetry operators 
is given in (16). It is now easy to use (10) and 
(20)-(22) to calculate interatomic distances as a func- 
tion of the fourth superspace coordinate t. 

The interpretation of the distance versus t plots 
(Figs. 4-9) can be expressed as follows. For a pair of 
atoms, definite values for the coordinates in (22) and 
for the modulation function amplitudes [(10) and 
(20)], the distance can be calculated as a function of 
t. This results in a continuous curve. The distance at 
each value of t corresponds to the distance some- 
where in the crystal. Generally, distances for nearby t 
values occur at widely separated positions in the 
crystal. Considering the distance of a single atom to 
all other atoms, or a selection of them, the collection 
of distances read off at a single t value corresponds 
to the distances between nearby atoms and the 
central atom placed somewhere in the crystal. Thus, 
considering all t values gives the variation of the 
coordination as a function of the position of the 
central atom in the crystal. The plots are given (Figs. 
4-9) with Pb and S 1 as central atoms. 

First consider the distance between Pb (u = 2) and 
S1 (/., = 1) in the basic structure. For one pair of 
atoms, with coordinates according to (22) and Table 
6, the distance becomes infinite for t going to plus or 
minus infinity. This function is shown as one of the 
curves in Fig. 4. Obviously, it is not periodic. A 
periodic distance function can be obtained, when a 
single Pb atom is paired with all possible S1 atoms, 
and for each t the minimum distance is selected. As 
the incommensurability is only along av~, it is suffi- 

cient to consider all S1 atoms on a row parallel to all 
In1, in (22) assumes all integer values]. A further 
complication is that there are two S atoms in the unit 
cell, of which either one may be closest to Pb. The 
first has coordinates as given in Table 6, the second 
is displaced by the centring translation (½, -½, 0, 
-½). The result is the plot given in Fig. 4. Curves 
marked A I and A2 correspond to the two different S 
atoms. The shortest Pb to S1 distance, as a function 
of t, is obtained by starting in a minimum A, and 
following the curve to a crossing point. Then the 
other curve is followed downwards to the other 
minimum A';. 

6.50 

6.00 

5.50 

,,~ 500 

u 4.50 c 
¢o 

4.00 

3.50 

3.00 

2.50 

)< 

AI A2 A1 A2 

-0.30 -0~10 0110 0130 0150 0170 0.90 

t 

Fig. 4. Basic structure distances between Pb (v -- 2) and $1 (v -- 1) 
as a function of the fourth superspace coordinate t. The curves 
marked A, give the distance between (2~ 1 0.0, 0, 1-0, 0.5) Pb 
and (E l ln,,, 0, 0, 0) S1. The curves marked A2 give the distance 
between (2, 110.0, 0, 1.0, 0.5) Pb and (E ljn,, + 0"5, -0 .5 .  0. 
0"5) SI. Equally marked curves correspond to different values 
for n,,, i.e. to different but translationally equivalent S atoms. 
Note that the symmetry operators refer to the standard super- 
space basis (Gs in Table 2). 
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Fig. 5. Basic structure distances between S1 (v = 1) and Pb (v = 2) 
as a function of the fourth superspace coordinate t. The curves 
with a minimum marked A, correspond to the distance between 
(E 110, 0, 0, 0) Sl and (2~ 110"0, 0, 1.0, n2, + 0.5) Pb. The curves 
marked A2 define the distance between (E 1'0, 0, 0, 0) SI and 
(2~ 110.5, 0.5, 1.0, n2,) Pb. Equally marked curves correspond 
to different values for n2~. Note that the curves are equivalent to 
similarly marked curves in Fig. 4. 
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F r o m  Fig. 4, as well as f rom (21) and  (22), it 
fol lows tha t  the c o o r d i n a t i o n  o f  Pb by S1 results in a 
p lo t  with a per iodic i ty  o f  a = 0"5878 in t. As fol lows 
f rom (21), this is the same per iodic i ty  as tha t  o f  the 
PbS subsys tem (u = 2). Al te rna t ive ly ,  the Pb to S1 
dis tances can  be ana lyzed  by cons ider ing  the d is tance  
o f  S1 to all possible Pb a toms  (//21 n o w  assumes all 
integer  values).  This  results in a p lot  which is 
per iodic  with per iodic i ty  1 in t (Fig. 5). Again ,  this 
per iodic i ty  is the same as tha t  o f  the subsystem of  the 
centra l  a tom,  now being subsys tem 1. This  means  
tha t  the co r re l a t ion  between the effect o f  the modu la -  
t ion on the dis tances  wi thin  subs tys tem ~, and  the 
in t rasubsys tem dis tances  could  be s tudied by com- 
par ing  the plot  o f  the in t r a subsys tem dis tances  v e r s u s  

t wi th  e i ther  Fig. 4 (u = 2) or  Fig. 5 (u = 1). 
A more  deta i led  r ep resen ta t ion  o f  these dis tances 

is given in Figs. 6 and  7. No te  tha t  a curve m a r k e d  A; 
( i =  1, 2) in Fig. 7 is equ iva len t  to the s imilar ly  
m a r k e d  curve in Fig. 6, bu t  tha t  the m i n i m u m  may  
occur  at  d i f ferent  t values. Only  a small  va r i a t ion  in 
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Fig. 6. Coordination of Pb (u = 2) by S1 (v = 1) as a function of 
the the fourth superspace coordinate t. Distances are calculated 
between the same atoms as given in Fig. 4. In the minima, the 
top curve defines the distance for the modulated structure. 

the m i n i m u m  Pb to S1 d is tance  was found;  for  the 
basic s t ruc ture  is was f rom 3.16 in A2 to 3-30 A in the 
crossing po in t  B (Table  9). Figs. 6 and  7 also show 
the effect o f  the m o d u l a t i o n  on  the i n t e r a tomic  
distances.  It was found  tha t  the m o d u l a t i o n  increases 
the shor tes t  d is tance  between the subsystems by 
0.03 A. The  range  o f  the shor tes t  d is tance  was 
decreased by the same a m o u n t :  f rom 0-14 to 0.11 A. 
This  is a s imilar  effect to t ha t  found  in 
(LaS)] ]4NbS2, a l t h o u g h  the m a g n i t u d e  o f  the m o d u -  
la t ion  is smaller  for  (PbS), 18TiS2. 

The  co r re l a t ion  between the c o o r d i n a t i n g  S a toms  
also becomes  clear f rom Fig. 6. A m i n i m u m  in the 
shor tes t  d is tance  (points  A) is a c c o m p a n i e d  by a 
m a x i m u m  in the next  shor tes t  d is tance,  o f  which 
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Fig. 8. Coordination of Pb (u = 2) by $2 of the same subsystem. 
The basic structure distances (horizontal lines) and the distances 
including the modulation are shown as a function of t. The 
curves correspond to the distance between (2~ 110, 0, 1.0, 0.5) 
Pb and the five following symmetry equivalents of $2: $2' = $2, 
822 = (2x 1'0, 0, 1"0, -0"5) $2, $23 = (2, 1 0, 0, 1"0, 0"5) $2, 824 
= (2x 1 0"5, -0"5, 1"0, 0) S2 and $25 = (2~ 10"5, 0-5, 1-0, 0) $2. 
See Table 8 for the distances without the effect of the modu- 
lation. 
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Fig. 7. Coordination of S1 (u = l) by Pb (u = 2) as a function of 
the fourth superspace coordinate t. Distances are calculated 
between the same atoms as in Fig. 5. In the minima, the top 
curve represents the distance for the modulated structure. 
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Fig. 9. Coordination of SI (u= l) by Ti atoms of the same 
subsystem. The basic structure distances (horizontal lines) and 
the distances including the modulation are shown as a function 
of t. The curves correspond to the distance between S1 and the 
following Ti atoms: Ti' = Ti, Ti 2 = (E 111"0, 0, 0, 0) Ti and Ti 3 
= (E 110.5, 0.5, 0, 0.5) Ti. See Table 8 for the average structure 
distances. 
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there are then two equal ones. A maximum in the 
shortest distance (point B) gives a minimum in the 
next one, which is equal to the shortest distance. The 
distances in points C (Fig. 6) are 3.61 and 3.56 A 
(Table 9). The difference between the corresponding 
shortest distances of 0.41 and 0.33 A, respectively, 
makes it difficult to say whether this should be 
considered as a single or triple coordination of Pb by 
S1. For the coordination of S1 by Pb, it is immedi- 
ately clear that the coordination varies between one 
(points Ai) and two (point D) (Fig. 7 and Table 9). 

Fig. 8 shows the Pb to $2 distance. Again, a 
periodicity of a = 0"5878 in t was observed. The 
maximum variation was found for the Pb---S2 pair 
along a,,3 (curve 1), amounting to 0.06 A, whereas 
the other distances varied less than 0.03/~. This is 
small compared to the amplitudes of the modulation 
functions of Pb (0.06/~) and $2 (0-07 A), for which a 
maximum variation of 2 x (0.06 + 0.07) = 0.26 A can 
be expected. Apparently, the $2 atoms move in 
coherence with the Pb atoms, so as to minimize the 
variation. A correlation between the remaining varia- 
tion in the distance of the Pb---S2 pair along a,,3 
(curve 1) and the Pb to S1 distance (Fig. 6) could not 
be observed, contrary to the situation found for 
(LaS)l.laNbS2. An explanation might be that for the 
latter compound the La--S1 and La--S2 distances 
are of the same order, whereas for (PbS)~ ~8TiS2 the 
intersubsystem distances, Pb to S1, are 0.25 to 0.45 A 
longer than the Pb to $2 distances. Other corre- 
lations between the intersubsystem and intra- 
subsystem distances of Pb to S cannot be discerned 
from either Fig. 6 or Fig. 8. 

The distance of S 1 to all possible Ti has periodicity 
1 in t (Fig. 9). The variation is small, as the modula- 
tion amplitudes on both atoms are already small. A 
correlation between the S1 to Ti and S1 to Pb 
distances can be obtained as follows. From the 
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Fig. 10. Projection of a part of the structure onto the (a~t, a~2) 

plane. The TiS2 unit cell is given, with Ti at x~3 = 0 and S1 at 
x,3 = 0-1221, showing the coordination of  S1 by three Ti atoms. 
(Not drawn are three SI atoms at x,3 = -0.1221, which would 
complete the antiprismatic six-coordination of Ti.) The Pb atom 
(x°3 = 0.362) of the PbS subsystem closest to SI is also given. (a) 
Corresponds to an A2-type minimum separation, (b) is for an 
Artype distance. The numbers of the Ti atoms correspond to 
the same numbers as given in Fig. 9 and Table 8. 

Table 9. lnteratomic distances between Pb (v = 2) and 
s1 (v= 1) 

The points refer to the atom pairs and t values as defined in Figs. 4--7. 

Basic structure Modulated structure 
Point distance (A) distance (A) 
A~ 3.21 3-23 
A2 3.16 3.20 
B 3.30 3-31 
Cj 3.64 3"61 
C2 3'59 3-56 
D 3"50 3"47 
El 4"32 4"34 
E2 4"29 4'30 

information given in the figure captions, it can be 
inferred that curves 1 and 2 (Fig. 9) and the curve 
marked A~ (Fig. 7) correspond to Ti and Pb atoms at 
the same side of S1 (x~2 "-0). The other curves 
correspond to metal atoms with x~2 = 0.5. The mini- 
mum A2 corresponds to Pb (x22 = 0.474) closest to 
S1. In Fig. 9 curve 3 exhibits a maximum for this 
value of r This means that Ti is at the same side of 
S1 as Pb and, with the same x~ as S1, it is at a 
maximum distance, in accordance with what one 
would expect from a simple repulsion model (Fig. 
10a). Alternatively, when Pb (x22 = -0-024) is at a 
minimum (A0, the two Ti atoms at the same side of 
S1 as this Pb have a distance larger than average, but 
not a maximum. The reason is that the x~ coordi- 
nates for S1 and these two Ti atoms are no longer 
the same (Fig. 10b). 

Concluding remarks 

In (PbS)I.18TiS2 the modulation mainly affects both 
atoms of the PbS subsystem. The largest dis- 
placements appear to be parallel to the layers, along 
the commensurate direction a~2 (Table 4). 

The coordination of Pb (v = 2) and S1 (v = 1) was 
studied by considering interatomic distances as a 
function of the fourth coordinate in superspace. In 
particular, the shortest distances from one atom to 
atoms of the other subsystem were calculated. It was 
shown that these functions have the periodicity of 
the subsystem to which the central atom belongs, 
allowing for an analysis of the correlation of intra- 
and intersubsystem distances. For Pb as the central 
atom, the variation in its distance to S1 was rela- 
tively small (Fig. 4), and of the same order as the 
variation in distances in ordinary modulated 
compounds. This gives a possible explanation for the 
relative stability of the inorganic misfit layer com- 
pounds. The effect of the modulation was found as a 
small increase of the shortest Pb to S1 distance. 
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Abstract 

Neutron powder diffraction data were collected for 
the titanate hollandites CSl.36Ti8O16, Cso.82Bao.41 - 
Ti8Ol6 and Cso.4oBao.79Ti8O16 over the temperature 
range 5 to 400 K. Rietveld refinement was used to 
determine the tetragonal lattice parameters and the 
structural parameters of these compounds. The lat- 
tice parameters a and c increase with Cs concentra- 
tion from a =10-1688(2) and c = 2 . 9 5 9 5 ( 1 ) A  in 
Cso.40Bao.79Ti8O16 at 5 K to a = 10.2682 (2) and c = 
2.9643 (1)A in CS1.36Ti8OI6 at the same temperature. 
The expansion in these compounds is isotropic only 
in Cs1.36Ti8016 with a linear-expansion coefficient of 
- 8  x 10 -6  K - I  at 300 K. The presence of Cs is 
evident by the compression of the centres of the 
oxygen octahedral walls separating adjacent tunnels 
and by the enlargement of the tunnel cross-section. It 
is evident that the mean (Ti---O) bond length in the 
oxygen octahedra is influenced not only by the rela- 
tive Ti 3 +/Ti 4 +concentration in the octahedra but 
also by the Cs in the tunnels. The oxygen box 
forming the cavity around each tunnel ion, Ba or Cs, 
is approximately 10% larger in Cs1.36Ti8016 than in 
the pure Ba hollandite Bal.o7Ti80~6. All the tunnel 
ions are off-centred along the tunnel directions 

0108-7681/91/030325-09503.00 

owing to the large size of Cs in relation to the 
intrinsically small tunnel cavities and the pairing of 
these ions in the tunnels. Positional disorder of all 
the ions is evident in the temperature factors, which 
possess a large temperature-independent component. 
The X-ray Debye temperature Og of each hollandite 
is in the range 420 to 460 K and the r.m.s, dis- 
placement of the tunnel ions along the tunnel axis 
arisinog from positional disorder is between 0.16 and 
0.20 A. In the context of hollandites being used as 
hosts for radioactive Cs in nuclear waste, an analysis 
is presented of the possibilty of Cs or Ba migration 
along the tunnels. 

Introduction 

A key aspect of the development of a solid 
wasteform for high-level nuclear waste is the immo- 
bilization of radioactive caesium. This element con- 
stitutes a major component of nuclear waste and is 
normally associated with extremely soluble com- 
pounds rather than chemically inert compounds. In 
the titanate wasteform known as SYNROC (Fielding 
& White, 1987) caesium is immobilized quite success- 
fully with a leach resistance many orders of magni- 
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